3.50 \(\int (d \cot (e+f x))^n \sin (e+f x) \, dx\)

Optimal. Leaf size=73 \[ -\frac {\sin (e+f x) \sin ^2(e+f x)^{n/2} (d \cot (e+f x))^{n+1} \, _2F_1\left (\frac {n}{2},\frac {n+1}{2};\frac {n+3}{2};\cos ^2(e+f x)\right )}{d f (n+1)} \]

[Out]

-(d*cot(f*x+e))^(1+n)*hypergeom([1/2*n, 1/2+1/2*n],[3/2+1/2*n],cos(f*x+e)^2)*sin(f*x+e)*(sin(f*x+e)^2)^(1/2*n)
/d/f/(1+n)

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 73, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.059, Rules used = {2617} \[ -\frac {\sin (e+f x) \sin ^2(e+f x)^{n/2} (d \cot (e+f x))^{n+1} \, _2F_1\left (\frac {n}{2},\frac {n+1}{2};\frac {n+3}{2};\cos ^2(e+f x)\right )}{d f (n+1)} \]

Antiderivative was successfully verified.

[In]

Int[(d*Cot[e + f*x])^n*Sin[e + f*x],x]

[Out]

-(((d*Cot[e + f*x])^(1 + n)*Hypergeometric2F1[n/2, (1 + n)/2, (3 + n)/2, Cos[e + f*x]^2]*Sin[e + f*x]*(Sin[e +
 f*x]^2)^(n/2))/(d*f*(1 + n)))

Rule 2617

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((a*Sec[e +
f*x])^m*(b*Tan[e + f*x])^(n + 1)*(Cos[e + f*x]^2)^((m + n + 1)/2)*Hypergeometric2F1[(n + 1)/2, (m + n + 1)/2,
(n + 3)/2, Sin[e + f*x]^2])/(b*f*(n + 1)), x] /; FreeQ[{a, b, e, f, m, n}, x] &&  !IntegerQ[(n - 1)/2] &&  !In
tegerQ[m/2]

Rubi steps

\begin {align*} \int (d \cot (e+f x))^n \sin (e+f x) \, dx &=-\frac {(d \cot (e+f x))^{1+n} \, _2F_1\left (\frac {n}{2},\frac {1+n}{2};\frac {3+n}{2};\cos ^2(e+f x)\right ) \sin (e+f x) \sin ^2(e+f x)^{n/2}}{d f (1+n)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 1.10, size = 264, normalized size = 3.62 \[ -\frac {8 (n-4) \sin ^2\left (\frac {1}{2} (e+f x)\right ) \cos ^4\left (\frac {1}{2} (e+f x)\right ) F_1\left (1-\frac {n}{2};-n,2;2-\frac {n}{2};\tan ^2\left (\frac {1}{2} (e+f x)\right ),-\tan ^2\left (\frac {1}{2} (e+f x)\right )\right ) (d \cot (e+f x))^n}{f (n-2) \left (2 (n-4) \cos ^2\left (\frac {1}{2} (e+f x)\right ) F_1\left (1-\frac {n}{2};-n,2;2-\frac {n}{2};\tan ^2\left (\frac {1}{2} (e+f x)\right ),-\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )-2 (\cos (e+f x)-1) \left (n F_1\left (2-\frac {n}{2};1-n,2;3-\frac {n}{2};\tan ^2\left (\frac {1}{2} (e+f x)\right ),-\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )+2 F_1\left (2-\frac {n}{2};-n,3;3-\frac {n}{2};\tan ^2\left (\frac {1}{2} (e+f x)\right ),-\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )\right )\right )} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(d*Cot[e + f*x])^n*Sin[e + f*x],x]

[Out]

(-8*(-4 + n)*AppellF1[1 - n/2, -n, 2, 2 - n/2, Tan[(e + f*x)/2]^2, -Tan[(e + f*x)/2]^2]*Cos[(e + f*x)/2]^4*(d*
Cot[e + f*x])^n*Sin[(e + f*x)/2]^2)/(f*(-2 + n)*(2*(-4 + n)*AppellF1[1 - n/2, -n, 2, 2 - n/2, Tan[(e + f*x)/2]
^2, -Tan[(e + f*x)/2]^2]*Cos[(e + f*x)/2]^2 - 2*(n*AppellF1[2 - n/2, 1 - n, 2, 3 - n/2, Tan[(e + f*x)/2]^2, -T
an[(e + f*x)/2]^2] + 2*AppellF1[2 - n/2, -n, 3, 3 - n/2, Tan[(e + f*x)/2]^2, -Tan[(e + f*x)/2]^2])*(-1 + Cos[e
 + f*x])))

________________________________________________________________________________________

fricas [F]  time = 0.78, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\left (d \cot \left (f x + e\right )\right )^{n} \sin \left (f x + e\right ), x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*cot(f*x+e))^n*sin(f*x+e),x, algorithm="fricas")

[Out]

integral((d*cot(f*x + e))^n*sin(f*x + e), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (d \cot \left (f x + e\right )\right )^{n} \sin \left (f x + e\right )\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*cot(f*x+e))^n*sin(f*x+e),x, algorithm="giac")

[Out]

integrate((d*cot(f*x + e))^n*sin(f*x + e), x)

________________________________________________________________________________________

maple [F]  time = 2.26, size = 0, normalized size = 0.00 \[ \int \left (d \cot \left (f x +e \right )\right )^{n} \sin \left (f x +e \right )\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*cot(f*x+e))^n*sin(f*x+e),x)

[Out]

int((d*cot(f*x+e))^n*sin(f*x+e),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (d \cot \left (f x + e\right )\right )^{n} \sin \left (f x + e\right )\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*cot(f*x+e))^n*sin(f*x+e),x, algorithm="maxima")

[Out]

integrate((d*cot(f*x + e))^n*sin(f*x + e), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \sin \left (e+f\,x\right )\,{\left (d\,\mathrm {cot}\left (e+f\,x\right )\right )}^n \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(e + f*x)*(d*cot(e + f*x))^n,x)

[Out]

int(sin(e + f*x)*(d*cot(e + f*x))^n, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (d \cot {\left (e + f x \right )}\right )^{n} \sin {\left (e + f x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*cot(f*x+e))**n*sin(f*x+e),x)

[Out]

Integral((d*cot(e + f*x))**n*sin(e + f*x), x)

________________________________________________________________________________________